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Abstract

Objective: The first aim was to investigate specific signature patterns of metabolites that are significantly altered in first-
trimester serum of women who subsequently developed preeclampsia (PE) compared to healthy pregnancies. The second
aim of this study was to examine the predictive performance of the selected metabolites for both early onset [EO-PE] and
late onset PE [LO-PE].

Methods: This was a case-control study of maternal serum samples collected between 8+0 and 13+6 weeks of gestation
from 167 women who subsequently developed EO-PE n = 68; LO-PE n = 99 and 500 controls with uncomplicated
pregnancies. Metabolomics profiling analysis was performed using two methods. One has been optimized to target
eicosanoids/oxylipins, which are known inflammation markers and the other targets compounds containing a primary or
secondary biogenic amine group. Logistic regression analyses were performed to predict the development of PE using
metabolites alone and in combination with first trimester mean arterial pressure (MAP) measurements.

Results: Two metabolites were significantly different between EO-PE and controls (taurine and asparagine) and one in case
of LO-PE (glycylglycine). Taurine appeared the most discriminative biomarker and in combination with MAP predicted EO-PE
with a detection rate (DR) of 55%, at a false-positive rate (FPR) of 10%.

Conclusion: Our findings suggest a potential role of taurine in both PE pathophysiology and first trimester screening for EO-
PE.
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Introduction

Preeclampsia (PE) remains a leading complication of pregnancy

and affects approximately 2% of women worldwide [1–3]. Early

onset PE (EO-PE), requiring delivery before 34 weeks of gestation

(GA), is considered the most severe form of the disease in contrast

to late onset PE (LO-PE; delivery $34 weeks GA) [3;4]. Apart

from perinatal problems, PE is also associated with substantial

health problems later in life. Both women who suffered from PE

and their children have a substantially elevated risk of chronic

hypertension, cardiovascular disease and diabetes mellitus type-2

[5]. The diagnosis of PE is based on clinical symptoms, such as

proteinuria and de novo hypertension. These symptoms however

are only the terminal features of a cascade of events initiated

during the first trimester of pregnancy [6;7]. Therefore early

recognition of patients at high risk and timely intervention ahead

of the clinical onset of the disease would enable suitable pregnancy

care and hopefully better pregnancy outcomes for both mother

and child.

It becomes more and more clear that PE is caused by

interactions between complex pathophysiological mechanisms,

individual genes and environmental factors. Some features of the

pathophysiology of PE have been elucidated already. Underlying

mechanisms comprise impaired early placentation and trophoblast

invasion in the spiral arteries, placental hypoxia and endothelial

dysfunction [8–11]. However, there is currently no complete view

on the pathophysiology of PE. Classical approaches to discover

novel PE biomarkers are hypothesis-driven and concentrate

mostly on the early placental development and maternal

adaptation to pregnancy. Other approaches which include novel

classes of methods, such as ‘‘omics technologies’’ are ‘‘integrated

system-based’’ methods which study general chemical processes in
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the whole organism to subsequently focus on differences in

concentrations of individual molecules, their interactions and role

in the pathogenesis.

One of these ‘‘omics’’ technologies is metabolomics. Metabo-

lomics has been successfully applied as biomarker discovery tool

for the early detection of diseases such as cancer and cardiovas-

cular disease [12].

Early prediction of PE by using metabolomics analyses on

samples derived from maternal blood has been investigated by

other groups (Table 1) [13–16]. The markers identified differ

between studies as do the detection rates, and ranged from 50% in

a heterogeneous PE group to 82.6% in an EO-PE group when

metabolites are combined with classical PE screening markers such

as maternal characteristics, uterine artery Doppler velocity and

fetal crown-rump-length (CRL) measurements [13–16].

In our large nested case-control study we have divided the PE

group in two subgroups (EO-PE and LO-PE), as it is known that

PE is a heterogeneous syndrome and the pathophysiology of both

entities may differ [9;17;18]. In order to cover the biologically

relevant pathways, we selected two metabolomics profiling

methods. One has been optimized to target eicosanoids/oxylipins,

which are know inflammation markers and the second method

targets a wide variety of biogenic amines, including the amino

acids.

These groups of metabolites are associated with PE as well other

pregnancy complications such as placental abruption, IUGR and

preterm birth [19–23]. Furthermore both groups are also strongly

associated with different inflammatory processes in the cell and

endothelial dysfunctions, which are common for PE and

cardiovascular disease later in life [24–26]. The above associations

make them potentially suitable candidate markers for prediction of

PE.

The study had two aims: the first aim was to investigate specific

signature patterns of metabolites that are significantly altered in

first-trimester serum of women who subsequently developed PE

compared to healthy pregnancies. The second aim of this study

was to examine the predictive performance of the selected

metabolites for both EO-PE and LO-PE.

Material and Methods

Ethics Statement
This study approach was approved by the Scientific Ethical

Committee of the University Medical Centre of Utrecht (METC

Utrecht), the Netherlands (protocol number: 11-002). All partic-

ipating women in this manuscript have given written informed

consent during the first-trimester Down syndrome screening.

Study population
This was a nested case-control study derived from a large cohort

of women participating in the routine Dutch first trimester Down

syndrome screening between 2007 and 2009. In this context

maternal age, sample date, gestational age (GA) at sampling,

maternal weight, method of conception, history of diabetes, and

smoking status were recorded by a midwife or gynaecologist. As

part of the screening, maternal serum concentrations of two

standard placental markers (pregnancy-associated plasma protein-

A [PAPP-A] and free b-subunit of human Chorionic Gonadotro-

pin [fb-hCG]) were measured in serum of blood sampled at 8+0–

13+6 weeks GA. After blood withdrawal, samples were centrifuged

within 6 hours and stored at 4uC until serum analysis for PAPP-A

and fb-hCG. Subsequently, serum samples were stored at 280uC
until metabolomics analysis. Thus, samples underwent one freeze-

thaw cycle prior to analysis. All samples used in this study were
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handled the same way. Where applicable, GA was calculated

based on first trimester CRL measurement at ultrasound

examination using the formula of Robinson and Fleming (1975)

[27]; otherwise the first day of the last menstrual period was used.

Pregnancy outcomes, including chromosomal disorders, date of

birth, birthweight and hypertensive pregnancy complications (PE,

HELLP syndrome or pregnancy induced hypertension), were

collected through self-reporting by the participating women. Six

months after the estimated delivery date, a reminder letter was

sent to these women to collect missing data. This way, 75% of all

pregnancy outcomes could be recorded. For the current study

women with a multiple pregnancy, women who delivered before

24 weeks and women who gave birth to a child with a

chromosomal abnormality were excluded.

By follow up of self-reported cases of EO-PE we confirmed the

diagnosis of EO-PE in 68 pregnancies at the participating

hospitals. Moreover, from a larger cohort of women who

developed LO-PE we randomly selected 99 cases. From all EO-

PE and LO-PE cases we collected missing data on maternal

characteristics i.e. medical history, parity, weight, height, first

trimester mean arterial pressure (MAP) and pregnancy outcome

i.e. GA at delivery, birthweight and fetal sex. The control group,

consisting of 500 women having delivered phenotypically and

chromosomally normal neonates at term (37+0–42+0 weeks) and

not having developed any pregnancy complication, was randomly

selected from the two largest ultrasound centres participating in

the routine Dutch first trimester Down syndrome screening

program (Universitair Verloskundig Centrum Utrecht and De

Poort Leiden). The outcomes of these pregnancies were confirmed

in the midwifery practices and missing maternal characteristics

and first trimester MAP were collected.

Outcome measures
PE was defined according to the criteria of the International

Society for the Study of Hypertension in Pregnancy as: gestational

hypertension beyond 20 weeks GA in previously normotensive

women with a systolic blood pressure $140 mm Hg and/or

diastolic blood pressure $90 mm Hg on at least two occasions

four hours apart, with the presence of proteinuria of $300 mg in

24-hour collection or at least 2+ by dipstick on a spot urinalysis

[6]. Early onset PE (EO-PE) was defined as PE in pregnancies

delivering ,34 weeks GA, and late onset PE (LO-PE) as PE in

pregnancies delivering $34 weeks. Pregnancy at term was defined

as delivery $37 weeks of GA.

MAP was calculated from the formula DP+1/3 (SP – DP),

where DP represents diastolic blood pressure and SP -systolic

blood pressure.

Sample analysis
Amine measurements were performed using the method based

described previously by Noga et al., 2012 [28]. The amine

platform covers amino acids and biogenic amines employing an

Accq-tag derivatization strategy adapted from the protocol

supplied by Waters (Etten-Leur, The Netherlands). 5 mL of each

plasma sample was spiked with an internal standard solution,

followed by deproteination by addition of MeOH. The superna-

tant was transferred to a deactivated autosampler vial (Waters) and

dried under N2. The residue was reconstituted in borate buffer

(pH 8.5) with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate

(AQC) reagent (Waters). After reaction, the vials were transferred

to an autosampler tray and cooled to 10uC until the injection

(1.0 mL) of the reaction mixture into the UPLC-MS/MS system.

An ACQUITY UPLC system with autosampler (Waters) was

coupled online with a Xevo Tandem Quadrupole mass spectrom-

eter (Waters) operated using Masslynx data acquisition software

(version 4.1; Waters). The samples were analyzed by UPLC-MS/

MS using an Accq-Tag Ultra column (Waters).

The Xevo TQ was used in the positive-ion electrospray mode

and all metabolites were monitored in Selective Reaction

Monitoring (SRM) using nominal mass resolution.

Acquired data were evaluated using Quanlynx software

(Waters), by integration of assigned SRM peaks and normalization

using proper internal standards. For analysis of amino acids their
13C15N-labeled analogs were used. For other amines, the closest-

eluting internal standard was employed. Blank samples were used

to correct for background, and in-house developed algorithms

were applied using the pooled QC samples to compensate for drift

in the sensitivity of the mass spectrometer with and over different

batches [29].

Measurements of eicosanoids/oxylipins was performed as

described earlier by Strassburg et al [30]. After thawing the

250 mL serum aliquots on ice, the samples were treated

immediately with antioxidants (0.2 mg 3,5-di-t-butyl-4-hydroxy-

toluene [BHT]/Ethylenediaminetetraacetic acid [EDTA]) and

spiked with a set of 34 isotopically labeled internal standards

(ISTDs). Compound extraction was performed with solid phase

extraction using Oasis Hydrophilic-lipophilic-balanced reversed-

phase sorbent for acids [HLB] (60 mg/30 mm). Oxylipins were

eluted with 2 mL ethyl acetate after wetting the cartridge with

0.5 mL methanol. The eluent was reduced under nitrogen. The

dried extract was subsequently reconstituted in 50 mL solution of

methanol and acetonitrile (1:1) containing 100 nM 1-cyclohex-

yluriedo-3-dodecanoic acid (CUDA) as a quality marker for the

analysis. Afterwards, the extract was filtered by centrifugation

using Amicon Ultrafree-MC Durapore PVDF filter (pore-size

0.1 mM; Millipore, Bedford, MA).

Samples were analyzed by liquid chromatography (LC-MS;

Agilent 1260, San Jose, CA, USA) coupled to electrospray

ionization on a triple quadrupole mass spectrometer (Agilent

6460, San Jose, CA, USA). For analysis 5 mL of the extract was

injected. The auto sampler was cooled at 10uC. Chromatographic

separation was achieved on an Ascentis Express (2.16150 mm,

2.7 mm particles; Sigma-Aldrich Supelco) column using the

solvents A, 0.1% acetic acid, and B, 90:10 v/v acetonitril/

isopropanol. Electrospray ionization was performed in the

negative ion mode.

To detect the individual oxylipins, MRM in negative ion mode

was performed with individually optimized fragmentor voltage

and collision energies (Optimizer application, MassHunter,

Agilent). Optimal MRM settings were obtained from flow

injection analysis of pure standards using the optimizer application

and compared to literature when available. Dynamic MRM was

used, assuring optimal dwell time and sufficient data points per

peak.

Peak determination and peak area integration was performed

automatically with MassHunter Quant (Agilent, Version B.04.00)

while auto-integration was manually inspected and corrected if

necessary. The obtained peak areas of targets were corrected by

appropriate ISTD and calculated response ratios were used

throughout the analysis. In-house developed algorithms were

applied using the pooled QC samples to compensate for shifts in

the sensitivity of the mass spectrometer over different batches [29].

Statistical analysis
Only metabolites detected in more than 80% of the samples

were included in statistical analysis. For other analytes, data below

the detection limit, where the LC-MS software provided a missing

value, were imputed as half the lowest detectable value for that

Metabolomics for the Prediction of Preeclampsia
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individual analyte. This replacement was made to get a more

realistic value in further calculations and was a compromise

between substituting a zero value, which would be an underes-

timation, and truncating these values at the lowest measurable

level, which would be an overestimation of their actual concen-

trations.

In accordance with the statistical approach described below, the

data set was divided into sets for training, testing (evaluation) and

validation, respectively. For each group (controls, EO-PE, LO-

PE), samples were randomly assigned to the training (40%), test

(30%) or validation set (30%). Overall samples assignment was as

follows: training set 200 controls, 27 EO-PE, 40 LO-PE; test set

150 controls, 20 EO-PE, 30 LO-PE; validation set 150 controls, 21

EO-PE, 29 LO-PE.

After this random assignment we confirmed that there were no

significant differences in maternal characteristics between the

three sets (results not shown). The concentration of the (remaining)

metabolites and MAP of the training set were expressed as

multiples of the gestation-specific normal medians (MoMs). MoMs

were log-transformed to provide normal distributions. Normal

medians were obtained by regression analysis of the median

concentration for each completed gestational week in the controls

of the training set, weighted for the number of women tested.

Values of MoM were adjusted for variables such as gestation,

weight, smoking and ethnicity where MoM values differed

significantly between groups (within controls), following the

standard methods described by Cuckle and Wald, with curve

fitting based on the training set [31].

Maternal characteristics (i.e. medical records, parity, weight and

length) were used to calculate prior risks for PE in multiple logistic

regression models. The steps undertaken to develop the models for

prior risk for EO-PE and LO-PE were described earlier in detail in

our recent article [32].

In the next step, metabolites MoM data were compared

between controls and either EO-PE or LO-PE, using a Student’s t-

test. Values were corrected for multiple testing by calculating the

False Discovery Rate (FDR).

The potential of MAP and metabolites with FDR,15% as part

of a PE prediction model was further tested using logistic

regression in R statistical software. Training models were based

on training set data (controls and either EO-PE or LO-PE cases)

for prior risks and log-MoM data for each significant metabolite as

well as all possible metabolites combinations. Models were then

tested on test set data for the corresponding metabolites. Models

were evaluated based on their predicted Detection Rate [DR]

(sensitivity) in the test set for a fixed 10% False Positive Rate [FPR]

(1-specificity).

The final models of risk prediction including the metabolite

values were calculated in R using separate models for both EO-PE

and LO-PE, respectively. The model with the best performance

was validated on the validation set.

Since we previously found that PE pregnancies complicated by

growth restriction (,10th birth weight centile), had more

distinctive classical marker levels that PE alone, both prediction

models (EO-PE and LO-PE) were separately examined for both

neonates that were appropriate-for-gestational age (AGA) and

those who had a birth weight below the 10th centile [32].

Statistical analyses were performed using SPSS (release 20.0;

Chicago, IL), SAS software package (release 9.2; SAS Institute,

Cary, NC, USA) and R programming language version 2.15

(http://www.r-project.org).

Results

Baseline characteristics of the study population are shown in

Table 2. Women who developed PE had higher BMI (EO-PE 24.7,

p,0.0001; LO-PE 23.7, p = 0.005), were more often smokers

(EO-PE 11.8% vs 4.2%, p = 0.008), and more often had a history

of hypertensive pregnancy disorders compared to controls (EO-PE

5.9%, p = 0.009; LO-PE 10.1%, p,0.0001). Furthermore, there

were more nulliparous women among the cases (both EO-PE

80.9% and LO-PE 72.7%, p,0.0001).

Table 2. Adapted from Kuc et al., 2013 – Study population baseline characteristics in control and PE pregnancies. Values are
presented as median (IQR) or number (%) [32].

Characteristics Controls EO-PE LO-PE

n = 500 n = 68 n = 99

Maternal age (y) 33 (30–35) 34 (30–37) 33 (30–36)

Maternal weight (kg) 65.5 (60.0–73.0) 70.0 (62.0–81.5)* 67.5 (62.0–75.0)

Maternal BMI (kg/m2) 22.8 (20.7–24.8) 24.7 (21.9–29.3)* 23.7 (21.3–26.5)*

Nulliparity 233 (46.6) 55 (80.9)* 72 (72.7)*

Smoking 21 (4.2) 8 (11.8)* 6 (6.1)

Assisted reproduction 0 (0) 3 (4.4) 8 (8.1)

Gestation at sampling (days) 88 (84–91) 85 (76–89)* 85 (79–89)*

History of hypertensive pregnancy disorders 4 (0.8) 4 (5.9)* 10 (10.1)*

Gestation at birth (wk) 40 (39–41) 31 (30–32)* 37 (36–39)*

Birthweight (gr) 3544 (3243–3800) 1300 (1045–1609)* 2650 (2130–3110)*

Birthweight centile 57.0 (33.1–78.4) 25.0 (13.4–50.4)* 13.8 (3.8–46.0)*

Sex, n male (%) 244 (48.8) 34 (49.7) 53 (53.5)

A Pearson’s chi square test and Mann-Whitney U test, both with post hoc Bonferroni correction were used for statistical analysis. Adjusted significance value p,0.016 (*).
EO-PE: early-onset preeclampsia; LO-PE: late-onset preeclampsia; IQR: interquartile range; BMI: body mass index.
doi:10.1371/journal.pone.0098540.t002
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Metabolite pre-selection
Using the data in the training set, we analyzed a total number of

105 potential variables (58 amines, 46 oxylipins and MAP) for

statistically significantly different levels between controls and cases

of both EO-PE and LO-PE. MAP proved significant for both of

these comparisons, with a 10% (MoM ratio case and controls

[MoMR] = 1.10) and 7% (MoMR 1.07) increase in EO- and LO-

PE, respectively, and both p-values less than 1024 (Table 3). For

the amines, taurine and asparagine were significantly different

(FDR,15%) between EO-PE and controls, with approximately

20% reduced levels (MoMR 0.79 and 0.84, respectively).

Glycylglycine showed a significant reduction in LO-PE of 28%,

MoMR 0.72 (Table 3). None of the oxylipins showed a significant

(FDR 15%) difference for any group.

Model selection
Prediction models were fitted based on the training set, using

the prior risk and one or more of the significant markers. For EO-

PE the model prediction rule was: 1/(1+e‘-(22.999+33.491 x

MAP-MoM 22.490 x Taurine)). For LO-PE the model prediction

rule was: 1/(1+e‘-(21.9792+22.0164 x MAP-MoM 22.490 x

Taurine)).

Comparison of the performance of these models on the test set

indicated that for EO-PE the highest DR was obtained for the

model with prior risk, MAP and taurine. This model gave a DR of

88% at a FPR of 10%, which is a 19% gain on the DR obtained

using only the prior risk. We selected this model for further

validation. Another model using prior risk, MAP, taurine and

asparagine also gave a DR of 88% (Table 4). However, this latter

model was not selected, as adding asparagine to the model did not

result in further improvement of the DR as compared to the

former model.

For LO-PE, the best predicting model included prior risk and

MAP. This model did not include any metabolites (Table 4).

Validation
Applying the selected models to independent data validated the

EO-PE model. This model gave a DR of 55%, which was a 25%

improvement to the DR obtained using only the prior risk

(Table 4). This gain of 25% was also obtained for the training set.

The LO-PE model resulted in a DR of 17% (Table 4). Neither

metabolic marker nor MAP improved this model. Final models for

both EO-PE and LO-PE are shown in Figure 1. Additionally both

models (EO-PE and LO-PE) were separately examined for

growth-restricted fetuses. None of the metabolites showed any

improvement in DR in these particular subgroups.

Discussion

Early detection of PE would allow the development and

application of targeted intervention. Detection, however, has been

restricted to clinical parameters such as high blood pressure and

presence of protein in the urine until recently. When these

parameters are present, the condition has already progressed. An

assay-detecting women at risk to develop PE at an early stage

would therefore be extremely helpful in preventing its severe

symptoms at the end of the pregnancy. To be able to develop such

an effective first trimester prenatal screening test, sets of

biomarkers are needed that are capable of detecting the presence

of pathologic conditions in maternal serum with high sensitivity

and specificity.

In this study we applied LC-MS based metabolomics to assess

the diagnostic potency of metabolites such as amines and oxylipins

to predict EO-PE en LO-PE from first trimester maternal serum.

Using standardized metabolomics analytical techniques and an

established statistical approach we identified two molecules of

which the serum concentrations were significantly decreased in the

first trimester maternal serum of women who subsequently

develop EO-PE, and one metabolite with decreased levels in

LO-PE compared to controls. All three compounds (taurine,

asparagine and glycylglycine) are amino acids or amino acid

derivates. Altered levels of amino acids in maternal fluids have

earlier been observed in preeclampsia and fetal growth restriction

[33–37]. Interestingly, they reported a clear association of the

properties of taurine and glycylglycine and the possible pathogen-

esis of PE. In contrast to previous studies performed in the second

and third trimester of pregnancy we did not find any differences in

eicosanoids and oxylipins between PE and controls. However, PE

is a dynamic process, and the metabolic expression profiles may

change during different stages of pregnancy which might explain

why we could not confirm up- or downregulation of any of these

metabolites.

Taurine is a sulfur-containing amino acid-like endogenous

compound found in substantial amounts in mammalian tissues.

Among its many functions, taurine is an important regulator of

antioxidation and membrane stabilization [38]. It is the most

abundant free amino acid –derivative in human placenta [39–40].

Through its cytoprotective role and as a regulator of cell volume,

taurine is thought to be involved in placental trophoblast

development, during the remodeling of the spiral arteries early

in the pregnancy [40]. Reduced activity of taurine transporters in

the placental trophoblast with shortage of taurine in placental

tissue is strongly associated with impaired trophoblast invasion into

the spiral arteries [40]. Impaired placental trophoblast invasion is

Table 3. Selection of the markers significantly different between controls and cases (EO-PE or LO-PE) based on training set.

Type marker Variable p-value FDR MoM ratio case/control

EO-PE

Blood pressure MAP ,0.0001 ,0.0001 1.10

Amine Taurine 0.0015 0.07 0.79

Amine Asparagine 0.0043 0.10 0.84

LO-PE

Blood pressure MAP ,0.0001 ,0.0001 1.07

Amine Glycylglycine 0.0002 0.01 0.72

Student’s t-test was used for statistical analysis. Significance value FDR,15%. EO-PE: early-onset preeclampsia; LO-PE: late-onset preeclampsia; MoM: multiple of the
median; FDR: false discovery rate; MAP: mean arterial pressure.
doi:10.1371/journal.pone.0098540.t003
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one of the most important components of PE pathology [9;17].

Furthermore, taurine has also been associated with cardio- and

vasoprotective effects through the influence of renin-angiotensin-

aldosterone system [38]. From different animal model studies

taurine appears to have antihypertensive effects and to reduce total

peripheral vessel resistance. Spontaneously hypertensive rats

supplemented with taurine show dosage dependant blood pressure

reduction [41]. Taurine supplementation during pregnancy in rats

leads to reduction of hypertension in their offspring as well [41–

43].

Table 4. Model predicted early preeclampsia detection rate (95% CI) for FPR of 10% with prior risk, MAP, taurine, asparagine and
glycylglycine in control and preeclampsia groups.

Training set Test set Validation set

DR at 10% FPR (95% CI) AUC DR at 10% FPR (95% CI) AUC DR at 10% FPR (95% CI) AUC

EO-PE

Prior risk 30 (16–49) 0.74 69 (48–85) 0.92 30 (14–50) 0.73

Prior risk + MAP 55 (37–72) 0.88 81 (58–92) 0.91

Prior risk + taurine 48 (31–66) 0.80 65 (43–82) 0.90

Prior risk + asparagine 36 (22–56) 0.77 70 (48–85) 0.91

Prior risk + MAP + taurine 55 (37–72) 0.88 88 (70–97)* 0.93 55 (36–76) 0.78

Prior risk + MAP + asparagine 55(37–72) 0.87 75 (53–89) 0.91

Prior risk+ MAP + taurine + asparagine 55 (37–72) 0.87 88 (70–97) 0.93

LO-PE

Prior risk 37 (24–53) 0.75 38 (22–55) 0.70 17 (8–35) 0.55

Prior risk + MAP 43 (28–58) 0.81 46 (30–64)* 0.79 17 (8–35) 0.65

Prior risk + glycylglycine 46 (31–60) 0.79 38 (21–59) 0.72

Prior risk + MAP + glycylglycine 53 (37–67) 0.83 42 (27–61) 0.78

DR: detection rate; FPR: false positive rate; MAP: Mean Arterial Pressure; CI: confidence interval; AUC: area under curve, EO-PE: early-onset preeclampsia; LO-PE: late-
onset preeclampsia.
*The best model selected for further validation.
doi:10.1371/journal.pone.0098540.t004

Figure 1. Receiver operating characteristic curves (ROCs) with prediction models for early onset preeclampsia and late onset
preeclampsia used on the validation set. Prior risk of preeclampsia containing maternal characteristics (black line) and prior risk for
preeclampsia combined with different markers (red line). MAP: mean arterial pressure.
doi:10.1371/journal.pone.0098540.g001
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Glycylglycine is a dipeptide of glycine. The latter one appears to

be an essential amino acid in pregnancy and fetal cardiovascular

development since its supplementation prevents elevation of blood

pressure in rats [44]. Furthermore, glycine is an important

component of the S-amino acid metabolic pathway as it

antagonises homocysteine levels [45;46]. Through the biological

feedback loop, lower levels of glycine lead to higher levels of

homocysteine. Hyperhomocysteinemia is a known risk factor for

endothelial dysfunction, PE and, also cardiovascular disease [47–

50].

So far, this is the first study associating lower levels of asparagine

to PE or any other aspect of cardiovascular disease. Although the

role of asparagine in PE development is not yet known, our results

may suggest that the shortage of asparagine may be a risk factor

for development of EO-PE.

All three metabolites are very interesting concerning the

pathophysiology of PE. However, there is still very little known

about the insights of the underlying mechanisms and possible

underlying cause of PE. Due to technical and financial restrictions

we only used two metabolomics platforms (amines and eicosa-

noids/oxylipins) in this study. These two groups are strongly

associated with inflammatory processes in the cell and with

endothelial dysfunctions, which are commonly present in PE

pregnancies [19–26] and therefore likely to reveal relevant

biomarkers. Nevertheless, there are many pathways associated

with the pathogenesis of PE, that would not be reflected here, so

future studies might also explore other metabolic profiles.

None of the significant metabolites that we found have been

brought to light by previous metabolomics studies [13–16]. From

all 105 metabolites we tested, five were reported to be important in

previous studies (methylhistidine, alanine, phenylalanine, methio-

nine and valine). However, in our study these five did not differ

between PE and control groups. There are hardly matches in

significant metabolites selected by different groups [13–16]. This

strengthens the assumption of the major complexity of the

syndrome and the origins of its pathology. The causative complex

of interacting mechanistically blameworthy factors as well as the

likely presence of confounding factors in a system that inherently

changes over time, may therefore lead to differences not only

between two variants of the disease (EO-PE vs LO-PE), but also to

differences between subsets of patient and control cohorts and

even from one study to the next. Reproducibility of results is often

difficult in biomarker studies. Other metabolomics profiling

studies, on cancer for example, face similar difficulties [51–52].

This is mostly due to the fact that samples are taken or

manufactured at different conditions, at different time moments,

or in different populations. This is a shortcoming and a limitation

of this particular method. Therefore, further evaluation of the

metabolites identified in our study should be performed in

different populations.

The prediction model using a combination of prior risk with

MAP and taurine provided a DR of 55% at a fixed 10% FPR in

the case of EO-PE, which is comparable to the results, obtained in

training. Addition of asparagine did not further improve the results

(Table 4). For LO-PE a model using prior risk performed best and

it gave a DR of 15% on the validation set. Addition of MAP did

not improve the DR, however the AUC increased. Glycylglycine,

although significantly decreased in LO-PE versus controls

(Table 3), did not turn out to be sufficiently additionally

informative to become included in the final prediction model.

Therefore, taurine remains the single predictive metabolite marker

of this study. Because of its narrow affiliation with placentation,

hypertension and cardiovascular disease, a potential screening role

of taurine is conceivable.

Ideally, a biomarker for PE should be predictive throughout the

entire first trimester. However, due to different processes that are

involved in early pregnancy and placentation other biomarkers

might be predictive at different gestational weeks. Most of our

samples were taken after 11 weeks of gestation; a subanalysis of our

data indicated that the metabolites identified in this study were still

found in samples from 11 weeks onwards only (data not shown).

We chose not to combine the metabolites with classical first-

trimester screening markers such as Pregnancy Associated Plasma

Protein-A (PAPP-A), A Disintegrin And Metalloprotease 12

(ADAM12), Placental Protein 13 (PP13), Placental Growth Factor

(PlGF). Given our results, it is plausible that the DR of PE would

increase if taurine would be added, although the added value in

such a large-scale screening setting, also in relation to increased

costs and logistics, would need to be established in a larger

population before further recommendations can be made. Until

such validation studies have been carried out our results should be

considered preliminary.

In conclusion, three markers out of 105 were significantly

different between women who developed PE and healthy

individuals, but after adequate statistical analysis only taurine

remained as a predictive marker in the screening model. However,

given the possible role of taurine in hypertension treatment, its role

as a possible screening marker or maybe even as a diet supplement

early in pregnancy remains very interesting.
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